

8-bit
Microcontrollers

Application Note

Rev. 8075A-AVR-02/08

AVR1000: Getting Started Writing C-code for
XMEGA

Features
• Naming conventions

- Register names
- Bit names

• C-code names
- Bit and group masks
- Group configuration masks

• Methods for accessing registers
• Methods for writing reusable module functions

1 Introduction
Short development times and high quality requirements on electronic products has
made high-level programming languages a requirement. The main reason is that
High level languages make it easier to maintain and reuse code due to better
portability and readability.

The choice of programming language alone does not ensure high readability and
reusability; good coding style does. Therefore the XMEGA™ peripherals, header
files and drivers are designed with this in mind.

The most widely used high-level language for AVR® microcontrollers is C, and this
application note therefore focuses on C programming. To support most of the AVR
C compilers that are available the code examples are as far as possible written in
ANSI C. A few examples are specific to IAR Embedded Workbench®, but the ideas
and methods can be used for other compilers with minor changes. IAR specific
examples are clearly marked.

2 AVR1000

2 XMEGA Modules
An AVR XMEGA is composed of several building blocks: An AVR CPU core, SRAM,
Flash, EEPROM and a number of peripheral modules. These building blocks are
called “module types”. An XMEGA can have one or more instances of a given module
type. All instances of a module type have the same features and functions.

Some module types can be a subset of other module types. These inherit a subset of
the features (and registers) of the super type, all inherited features are fully
compatible. This applies to e.g. timers and IO ports. The subset of a module type can
for a timer mean that it has fewer compare and capture channels than a full timer
module. Similarly, an IO port may have less than eight pins.

A module type can be a “USART”, while the module instance is e.g. “USARTC0”,
where the “C0” suffix indicates the instance is “USART number 0 on port C”. For
simplicity, a module instance will be referred to as a module throughout this
document, unless there is a need to differentiate.

Each module has a number of registers that contain control or status bits. All modules
of a given type contain the same set (or subset) of registers, and all these registers
contain the same set (or subset) of control and status bits.

Figure 2-1. Module types, instances, registers and bits.

Bit 0

Module Type

Register

MODULEn

MODULE0

Bit 7

Register

Each module has a fixed base address in the IO memory map and all registers
contained in the module have fixed offset addresses relative to the module base
address. This way each register will not only have an absolute address in the IO
memory space, but also a relative address defined by its offset. The register offset
addresses are equal for all instances of a module type, simplifying the task of writing
drivers that can be used for all modules of a specific type.

8075A-AVR-02/08

 AVR1000

 3

8075A-AVR-02/08

2.1 Register Naming Convention
Register are roughly speaking divided into control, status and data registers and the
naming of registers reflect this. A general-purpose control register of the module is
named CTRL. If multiple general-purpose control registers exists in a module they
have a suffix character. In this case the control registers would be named CTRLA,
CTRLB, CTRLC and so on. This also applies to STATUS registers.

For registers that have a specific function the name reflects this functionality. For
example, a control register that controls the interrupt level of a module is named
INTCTRL.

Since the AVR data bus width is 8 bit, larger registers are implemented using several
8-bit registers. For a 16-bit register, the high and low bytes are accessed by
appending “H” and “L” respectively to the register name. For example, the 16-bit
Timer/Counter count register is named CNT. The two bytes are named CNTL and
CNTH.

For a register larger than 16 bit, the bytes are numbered from the least significant
byte. For example, the 32-bit ADC calibration register is named CAL. The four bytes
are named CAL0, CAL1, CAL2 and CAL3 (from least to most significant byte).

Most C compilers offer automatic handling of access to multi-byte registers. In that
case the name CNT, without “H” or “L” suffix, could be used to perform a 16-bit
access to the Timer/Counter count register. This is also the case for 32-bit registers.

2.2 Bit Naming Convention
Register bits can have an individual function or be part of a bit group that have a joint
function: An individual bit could be a bit that enables a module, e.g. the USART
ENABLE bit. A bit group can consist of two of more bits that jointly select a specific
configuration of the module that they belong to. A bit group offers up to 2n selections,
where n is the number of bits in the bit group. The two bits that control the USART
Receive Complete interrupt level, RXINTLVL[1:0], is an example of a bit group. These
two bits offer the following selections:

Table 2-1. RXINTLVL bits and corresponding interrupt level selection.
RXINTLVL1 RXINTLVL0 Interrupt level selection

0 0 Interrupt Off

0 1 Low level interrupt

1 0 Medium level interrupt

1 1 High level interrupt

Bits that are part of a group will always have a number suffix. Bits that are not part of
a bit group will never have a number suffix. A Timer/Counter control register D has
two bit groups, EVACT and EVSEL. The bits in these groups have a number suffix,
while the EVDLY bit, which is not part of a bit group has no number suffix.

Table 2-2. Bits groups and bit names for bits in Timer/Counter Control register D – CTRLD.
Bit Group EVACT - EVSEL

Bit name EVACT2 EVACT1 EVACT0 EVDLY EVSEL3 EVSEL2 EVSEL1 EVSEL0

Bit number 7 6 5 4 3 2 1 0

4 AVR1000
8075A-AVR-02/08

3 Writing C-code for XMEGA
The following sections focus on how to write C-code for the XMEGA. The examples
show how to make the code highly readable and portable between different XMEGA
devices. The examples can also be used as a guideline to write code that is easy to
verify and maintain.

XMEGA modules are located in dedicated and continuous blocks in the memory
space and can be seen as encapsulated units. This reflects on the way that the
modules are accessed when coding C: modules are encapsulated using C structs, in
which all module registers are contained. Figure 3-1 shows an illustration of this.

Note that some registers have no direct module association. These are not
encapsulated in structs, as the struct is used to associate registers with a module.

For larger code projects the module structs provide advantages, not only to
readability, but also because the compilers can reuse the module drivers and thereby
make the code very compact. This is described in more details later.

This document introduces a naming convention and register access methods that are
different from what AVR programming veterans are used to, but one should be aware
that the “classic” way to access registers is still supported by the header files. This
also applies on the bit level.

 AVR1000

Figure 3-1. Modules placed in dedicated blocks in IO memory space.

TCD1

TCE0

USARTC1

PORTH

PORTA

PORTB

PORTC

PORTD

PORTE

PORTF

PORTG

USARTC0

TCD0

SPIC0

IO memory space

struct PORT

struct USART

struct TC

struct SPI

3.1 XMEGA Header Files
A dedicated header file is available for each XMEGA device. If the target device is
specified in the project settings (assuming that one uses the IDE for IAR EWAVR),
the IAR compiler will automatically include the correct header file if the device file is
included as shown in Code Listing 3-1.

Code Listing 3-1. IAR header file inclusion.

#include <ioavr.h>

The advantage is that if the target device changes, there is no need to change the
source files, only the project settings.

 5

8075A-AVR-02/08

6 AVR1000
8075A-AVR-02/08

3.2 Modules Registers
The IO map is laid out so that all registers for a given peripheral module are placed in
one continuous memory block. Registers belonging to different modules are not
mixed. This makes it possible to organize all peripheral modules in C structs, where
the address of the struct defines the base address, of the module. All registers
belonging to a module are elements in the module struct.

An example is the Programmable Multi-level Interrupt Controller (PMIC) module. The
struct declaration for this module is shown in Code Listing 3-2 and an example of its
use in Code Listing 3-3. Note that the example in Code Listing 3-3 assumes that there
is an instance of the PMIC_t type named PMIC. This is covered later in this
document.

Code Listing 3-2. Module struct declaration.

typedef struct PMIC_struct {

 unsigned char STATUS; // Status Register

 unsigned char INTPRI; // Interrupt Priority

 unsigned char CTRL; // Control Register

} PMIC_t;

Code Listing 3-3. Module struct usage.

unsigned char temp;

temp = PMIC.STATUS; // Read status register into temp

PMIC.CTRL |= PMIC_PMRRPE_bm; // Set PMRRPE bit in control

 // register

3.2.1 Multi-word Registers in Module Structs

Some registers are used in conjunction with other registers to represent 16 or 32 bit
values. As example one could look at the ADC struct declaration shown in Code
Listing 3-4.

 AVR1000

 7

8075A-AVR-02/08

Code Listing 3-4. ADC struct declaration.

typedef struct ADC_struct {

 unsigned char CH0MUXCTRL; // Channel 0 MUX Control

 unsigned char CH1MUXCTRL; // Channel 1 MUX Control

 unsigned char CH2MUXCTRL; // Channel 2 MUX Control

 unsigned char CH3MUXCTRL; // Channel 3 MUX Control

 unsigned char CTRLA; // Control Register A

 unsigned char CTRLB; // Control Register B

 unsigned char REFCTRL; // Reference Control

 unsigned char EVCTRL; // Event Control

 WORDREGISTER(CH0RES); // Channel 0 Result

 WORDREGISTER(CH1RES); // Channel 1 Result

 WORDREGISTER(CH2RES); // Channel 2 Result

 WORDREGISTER(CH3RES); // Channel 3 Result

 unsigned char reserved_0x10;

 unsigned char reserved_0x11;

 unsigned char CH0INTCTRL; // Channel 0 Interrupt Control

 unsigned char CH1INTCTRL; // Channel 1 Interrupt Control

 unsigned char CH2INTCTRL; // Channel 2 Interrupt Control

 unsigned char CH3INTCTRL; // Channel 3 Interrupt Control

 unsigned char INTFLAGS; // Interrupt Flags

 WORDREGISTER(CMP); // Compare Value

 unsigned char PRESCALER; // Clock Prescaler

 unsigned char reserved_0x1A;

 unsigned char reserved_0x1B;

 unsigned char CALCTRL; // Calibration Control

 DWORDREGISTER(CAL); // Calibration Value

} ADC_t;

In Code Listing 3-4, the ADC channel result registers CH0RES, CH1RES, CH2RES,
CH3RES and the compare register, CMP, are 16-bit values. These are declared
using the WORDREGISTER macro shown in Code Listing 3-5. The calibration register,
CAL, is a 32-bit value, declared using the DWORDREGISTER shown in Code Listing 3-6.

8 AVR1000
8075A-AVR-02/08

Code Listing 3-5. WORDREGISTER Macro.

#define WORDREGISTER(regname) \

 union { \

 unsigned short regname; \

 struct { \

 unsigned char regname ## L; \

 unsigned char regname ## H; \

 }; \

 }

Code Listing 3-6. DWORDREGISTER Macro.

#define DWORDREGISTER(regname) \

 union { \

 unsigned long regname; \

 struct { \

 unsigned char regname ## 0; \

 unsigned char regname ## 1; \

 unsigned char regname ## 2; \

 unsigned char regname ## 3; \

 }; \

 }

As seen, the WORDREGISTER macro uses “H” and “L” suffix for the high and low bytes
respectively. The DWORDREGISTER uses number suffix to indicate the byte order. Both
the 16-bit and 32-bit registers can be accessed in 16-bit/32-bit mode, by using the
register name without suffix as shown in Code Listing 3-7.

Code Listing 3-7. Accessing registers of varying size.

unsigned char tempByte;

unsigned int tempWord;

unsigned long tempDword;

tempByte = ADCA0.CTRLA; // Read control register A

tempWord = ADCA0.CH0RES; // Read Channel 0 16-bit result

tempDword = ADCA0.CAL; // Read 32-bit Calibration value

Code Listing 3-7 shows how the single byte register CTRLA is read, how the two
CH0RES[H:L] registers are read using a 16-bit operation, and how the four CAL[3:0]
registers are read in a 32-bit operation. C compilers handle multi-byte registers
automatically. Note however that in some cases it may be required to read and write

 AVR1000

 9

8075A-AVR-02/08

multi-byte registers in one atomic operation to avoid corruption. In this case, interrupts
must be disabled during the multi-byte access to make sure that an interrupt service
routine does not interfere with the multi-byte access. AVR1306 includes examples on
how atomic access of registers is done for the XMEGA Timer/Counter modules.

3.3 Module Addresses
Definitions of all peripheral modules are found in the device header files available for
the XMEGA. The address for the modules is specified in ANSI C to make it
compatible with most available C compilers. Code Listing 3-8 shows how ADC 0 on
port A is defined.

Code Listing 3-8. Peripheral module definition.

#define ADCA (*(volatile ADC_t *) 0x0200)

Code Listing 3-8 shows how the module instance definition uses a dereferenced
pointer to the absolute address in the memory, coinciding with the module instance
base address. The module pointers are pre-defined in the XMEGA header files, it is
therefore not necessary to add these definitions in the source code

3.4 Bit Masks and Bit Group Masks
Register bits can be manipulated using pre-defined masks, or alternatively bit
positions. Bit positions are not recommended for most tasks. The pre-defined bit
masks are either related to individual bits, called a bit mask or a bit group, called a bit
group mask, or group mask for short.

A bit mask is used both when setting and clearing individual bits. A bit group mask is
mainly used when clearing multiple bits in a bit group. Setting multiple bit that are part
of a bit group is covered in section 3.5.

3.4.1 Bit Mask

Consider a Timer Counter Control Register D, CTRLD. The bit groups, bit names, bit
positions and bit masks of this register can be seen in Table 3-1.

Table 3-1. Bit groups, bit names, bit positions and bit masks for bits in Timer Counter Control register D – CTRLD.
Bit Group EVACT - EVSEL

Bit name EVACT2 EVACT1 EVACT0 EVDLY EVSEL3 EVSEL2 EVSEL1 EVSEL0

Bit position 7 6 5 4 3 2 1 0

Bit mask 0x80 0x40 0x20 0x10 0x08 0x04 0x02 0x01

Since the names of bits need to be unique for the compiler to handle them, all bits are
prefixed with the module type it belongs to. In many cases, the module type name is
abbreviated. For all bit defines related to the Timer/Counter modules, the bit names
are prefixed by “TC_”.

To differentiate between bit masks and bit positions, a suffix is also appended. For a
bit mask, the suffix is “_bm”. The name of the bit mask for the EVDLY bit is thus
TC_EVDLY_bm. Code Listing 3-9 shows the typical usage of a bit mask. The EVDLY bit

10 AVR1000
8075A-AVR-02/08

in the CTRLD register of Timer/Counter D0 is set, leaving all the other bits in the
register unchanged.

Code Listing 3-9. Bit mask usage.

TCD0.CTRLD |= TC_EVDLY_bm; // With bit mask specifier.

3.4.2 Bit Group Masks

Many functions are controlled by a group of bits. Timer Counter CTRLD register the
EVACT[2:0] and the EVSEL[3:0] bits are grouped bits. The value of the bits in a group
selects a specific configuration.

When changing bits in a bit group it is often required to clear the bit group before
assigning a new value. To put it in another way: It is not enough to set the bits that
should be set, it is also required to clear the bits that should be cleared. To make this
easy a bit group mask is defined. The group mask uses same name as the bits in the
bit group and is suffixed “_gm”.

Code Listing 3-10 shows how the group mask relates to the bit masks. In reality, the
group mask values are pre-calculated in the header files, so the compiler does not
need to calculate the same constant over and over again.

Code Listing 3-10. Group mask and bit mask relation.

#define TC_EVACT_gm (TC_EVACT2_bm | TC_EVACT1_bm | TC_EVACT0_bm)

The bit group mask is primarily intended to clear the old configuration of a bit group
before writing a new value. Code Listing 3-11 shows how this can be done. The code
will clear the EVACT bit group in the CTRLD register of Timer/Counter D0. This
construct is not very useful in itself. The group mask will typically be used in
conjunction with a group configuration mask, which is covered in section 3.5.

Code Listing 3-11. Group mask usage.

TCD0.CTRLD &= ~(TC_EVACT_gm); // Clear group bits with group mask.

3.5 Bit group Configuration Masks
It is often required to consult the datasheet to investigate what bit pattern needs to be
used when setting a bit group to a desired configuration. This also applies when
reading or debugging code. To increase the readability and to minimize the likeliness
of setting bits in bit groups incorrectly, a number of group configuration masks are
made available. Each group configuration mask selects a configuration for a specific
group mask.

The name of a group configuration mask is a concatenation of the module type, the
bit group name, a description of the configuration and a suffix, “_gc”, indicating that
this is a group configuration. See Figure 3-2 for an example.

 AVR1000

Figure 3-2. Group configuration name composition (using USART receive complete
interrupt level bits as example).

USART_RXCINTLVL_HI_gc

Module prefix

Bit group name Configuration name

"Group configuration" suffix

Inspecting the group configuration Figure 3-2, one can see that it is used to select a
configuration for the RXCINTLVL bits in a USART module. This specific group
configuration selects a high (HI) interrupt level.

The bit group for the Receive Complete Interrupt Level consists of two bits,
RXINTLVL[1:0]. Table 3-2 shows the available group configurations for this bit group.

The configuration names are “OFF”, “LO”, “MED” and “HI”. These names make it very
easy to write and maintain code, as it requires very little effort to understand what
configuration the specific configuration mask selects.

Table 3-2. RXINTLVL bits and corresponding interrupt level of module interrupt.
RXINTLVL1 RXINTLVL0 Interrupt level Group configuration mask

0 0 Interrupt off USART_RXCINTLVL_OFF_gc

0 1 Low interrupt level USART_RXCINTLVL_LO_gc

1 0 Medium interrupt level USART_RXCINTLVL_MED_gc

1 1 High interrupt level USART_RXCINTLVL_HIGH_gc

To change a bit group to a new configuration, the bit group configuration is typically
used in conjunction with the bit group mask, to ensure that the old configuration is
erased first. Code Listing 3-12 shows how the group mask and a configuration mask
can be used to reconfigure the USART C0 Receive Complete Interrupt level to
medium level.

Code Listing 3-12. Changing a bit group configuration.

USARTC0.INTCTRL = (USARTC0.INTCTRL & ~USART_RXCINTLVL_gm) | USART_RXCINTLVL_MED_gc;

Note that though it may be tempting to split the code in Code Listing 3-12 into two
separate code lines, one that clear the bit group and one that sets the new value, this
is not recommended. Since the INTCTRL register is defined as volatile, two
separate code lines will trigger reading and writing the INTCTRL register twice
instead of once. In addition to making the code inefficient, this can put the peripheral
in an unintended state.

The use of group masks to clear bits is not always required. Code Listing 3-13 shows
how all interrupt levels of USARTC0 can be configured at the same time. Receive
Complete, Transmit Complete and USART Data Register Empty interrupt levels are
set to MEDIUM, OFF and LOW interrupt levels respectively.

 11

8075A-AVR-02/08

12 AVR1000
8075A-AVR-02/08

Code Listing 3-13. Setting all configurations in a register at the same time.

USARTC0.INTCTRL = USART_RXCINTLVL_MED_gc |

 USART_TXCINTLVL_OFF_gc |

 USART_DREINTLVL_LO_gc;

3.5.1 Enumeration of Group Configuration masks

Unlike bit masks and group masks, the bit group configuration masks are defined
using C enumerators. One enumerator is defined for each bit group. The enumerator
for the USART RXCINTLVL bit group is shown in Code Listing 3-14.

Code Listing 3-14. USART RXCINTLVL enumerator

typedef enum {

 USART_RXCINTLVL_OFF_gc = (0x00 << 4);

 USART_RXCINTLVL_LO_gc = (0x01 << 4);

 USART_RXCINTLVL_MED_gc = (0x02 << 4);

 USART_RXCINTLVL_HI_gc = (0x03 << 4);

} USART_RXCINTLVL_t;

As seen in Code Listing 3-14, the name of the enumerator is a concatenation of the
module type (USART), the bit group (RXCINTLVL) and a suffix (_t) that indicates that
this is a data type.

Each of the enumerator constants behaves much like a normal constant when used
on its own. However, using an enumerator has the advantage that it creates a new
data type. USART_RXCINTLVL_t can be used as a type name, just like an int or
char. An enumerator constant can be used directly as integer, but assigning an
integer to an enumerator type will trigger a compiler warning. This can be used to the
programmers advantage. Imagine a function that sets the receive complete interrupt
level for a USART module. If the function accepts the interrupt level as an integer
type (e.g. unsigned char), any legal or illegal value can be passed to the function. If
the function instead accepts a parameter of type USART_RXCINTLVL_t, only the four
pre-defined constants in the USART_RXCINTLVL_t enumerator can be passed to the
function. Passing anything else will result in a compiler warning.

Notice that the constants in Code Listing 3-14 are shifted to the actual bit position.
This means that the enumerator contstants are the actual values that shall be written
to the register. No additional shifting is needed.

3.6 Functions Calls and Module Drivers
When writing drivers for module types that have multiple instances, the fact that all
instances have the same register memory map, can be utilized to make the driver
reusable for all instances of the module type. If the driver takes a pointer argument,
pointing to the relevant module instance, the driver can be used for all modules of this
type. When considering portability this represents a great advantage.

 AVR1000

 13

8075A-AVR-02/08

Consider a device with 8 Timers/Counters. The functions to initialize and access the
Timer/Counter modules can be shared by all module instances. Even though there is
a small overhead in passing the module pointer to the functions, the total code size
will often be reduced because the code is reused for all instances of each module
type. Even more important, development time, maintenance cost, and portability can
be greatly improved by using this approach.

Code Listing 3-15 shows a function that uses a module-pointer to select a clock
source for any Timer/Counter module.

Code Listing 3-15. Example function using module instance pointer

void TC_ConfigClockSource(volatile TC_t * tc,

 TC_CLKSEL_t clockSelection)

{

 tc->CTRLA = tc->CTRLA & ~TC_CLKSEL_gm | clockSelection;

}

The function takes two arguments: a module pointer of the type, TC_t, and a group
configuration type, TC_CLKSEL_t. The code in the function uses the Timer Counter
module pointer to access the CTRLA register to set a new clock selection for the
Timer/Counter module provided through the tc parameter.

Code Listing 3-16 shows how the function in Code Listing 3-15 can be used to
configure different Timer/Counter modules with different clock selections.

Code Listing 3-16. Calling a function that takes a module pointer as parameter

TC_ConfigClockSource (&TCC0, TC_CLKSEL_OFF_gc);

TC_ConfigClockSource (&TCC1, TC_CLKSEL_DIV1_gc);

TC_ConfigClockSource (&TCD0, TC_CLKSEL_DIV2_gc);

TC_ConfigClockSource (&TCD1, TC_CLKSEL_DIV1024_gc);

4 Alternative Ways of Writing Code
For convenience and to avoid forcing AVR programming veterans to change their
programming style it is still possible to use a programming style that does not involve
structs. It is also possible to use the bit name style that is used for megaAVR®. This
section briefly describes alternative ways of accessing registers and using bit names.

4.1 Register Names
It is possible to access any register without using the module structs. To refer to a
register directly, concatenate the module instance name, an underscore and the
register name. The same naming convention is used when programming in assembly.

Example: To access the CTRLA register of Timer/Counter C0, use the name
TCC0_CTRLA.

14 AVR1000
8075A-AVR-02/08

4.2 Bit Positions
It is possible to use bit masks to set or clear bits. A bits position within a register is
defined using the same name as the bit mask, with an additional prefix, “_bp” for bit
position. Code Listing 4-1 shows how the bit position can be used to configure a
register.

Code Listing 4-1. Alternative register access code.

PORTB_OUT = (1 << PORTB_OUT0_bp); // Set PORTB_OUT, bit0.

The bit position definitions are included for compatibility reasons. They are also
needed when programming in assembly for instructions that use a bit number.

5 Summary
For reference, an overview of the different postfixes used when dealing with bit
configuration is listed in Table 5-1.

Table 5-1. Overview of postfixes
Postfix Meaning Example
_gm Group Mask TC_CLKSEL_gm

_gc Group Configuration TC_CLKSEL_DIV1_gc

_bm Bit Mask TC_CCAEN_bm

_bp Bit Position TC_CCAEN_bp

Using the suggested methods to write C-code for XMEGA is by no means mandatory,
but the advantages offered should be considered used to ensure robust, portable,
reusable, and highly readable code. The larger the project, and the more features the
device has the bigger the advantage. For small projects it can be argued that there is
no benefit, but turning that argument upside down one can say that there is not
disadvantage either.

One thing is for sure: good code style is always an advantage.

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR®, AVR Studio® and others, are the registered
trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8075A-AVR-02/08

	1 Introduction
	2 XMEGA Modules
	2.1 Register Naming Convention
	2.2 Bit Naming Convention

	3 Writing C-code for XMEGA
	3.1 XMEGA Header Files
	3.2 Modules Registers
	3.2.1 Multi-word Registers in Module Structs

	3.3 Module Addresses
	3.4 Bit Masks and Bit Group Masks
	3.4.1 Bit Mask
	3.4.2 Bit Group Masks

	3.5 Bit group Configuration Masks
	3.5.1 Enumeration of Group Configuration masks

	3.6 Functions Calls and Module Drivers

	4 Alternative Ways of Writing Code
	4.1 Register Names
	4.2 Bit Positions

	5 Summary

